iisastr- programmer analyst Home | Enquiry | Contact Us

IISASTR BLOG
International Institute
Home Page sas programmer
iisastr]
Career Opportunities
Corporate Training
HR Consulting
Little Bit History About SAS
SAS Syllabus
Data warehousing Syllabus
Advanced Excel Syllabus
Spss Syllabus
Market Research with SPSS
Training
Data Analysis
iisastr
Corporate Training
current openings
IISASTR News

IISASTR aimed at providing world-class Training in the area of Research Analytics (courses offered both regular and Distance), Covering domains such as:

* SAS®/Clinical
* SAS®/Finance
* SAS®/Banking
* SAS®/Advanced Analytics
* SPSS®/Market Research
* Excel/Analytics
* Minitab

IISASTR Articles
Corporate Training

Spss feedback

I  find   the  spss training course really  useful  and   all  the  topics  are  covered   by    faculty with  patience   and  detail. The   course   is taught in a   very friendly

Thanks    for the excellent teaching..

Sally Pillai
Research Manager, Annik Technologies, Gurgaon


 » Good  faculty
 » Convenient to reach
 » Cooperative staff
 » Over all good experience in     learning.

Harsh Gupta, MBA (Finance)

Spss Syllabus

duration:30  hours


 

An Overview  of  SPSS

Mouse   and  keyboard  processing, frequently –used dialog boxes

Editing  output

Printing results

Creating  and   editing  a  data file

 

Managing Data:

Listing cases, replacing missing values, computing  new  variables,

recording variables, exploring data ,selecting  cases, sorting  cases,

merging files

 

Graphs

Creating and    editing graphs and charts

 

Frequencies:
Frequencies, bar  charts, histograms, percentiles

 

Descriptive Statistics:
measures of central tendency, variability,

deviation from normality, size and   stability.

Cross Tabulation and chi-square analyses

The  means  Procedure

 

Bivariate  Correlation: 
Bivariate  Correlation, Partial

Correlations  and  the  correlation matrix

The T-test  procedure:
Independent –samples, paired  samples, and  one

sample   tests

The one  way ANOVA procedure:
One way analysis of  variance

 

General Linear  model:
Two –way analysis of variance

 

General Linear  model:
three –way analysis of variance  and  the influence of covariates

Simple Linear  Regression

Multiple regression analysis

Multidimensional  scaling

Factor  analysis

Cluster   analysis